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with the first data, the second data and a noise model. The
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1
METHODS AND SYSTEMS FOR
TOMOGRAPHIC RECONSTRUCTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Phase Application of Inter-
national Application No. PCT/US2013/020942, filed Jan. 10,
2013, which claims priority to U.S. Patent Application No.
61/584,887, filed Jan. 10, 2012, both of which are incorpo-
rated herein fully by this reference.

BACKGROUND

There are numerous clinical situations where repeated
tomographic acquisitions are prescribed. For example, in
lung cancer treatment such scans are used both for diagnos-
tics as well as image-guided procedures. Specifically,
repeated surveillance scans are used diagnostically to moni-
tor nodule size over the course of treatment. Similarly, Com-
puted Tomography (CT) may be used in a cine mode to guide
a biopsy needle, wherein the cine mode provides a series of
rapidly recorded multiple image volumes taken at sequential
cycles of time. In both cases, there tends to be substantial
similarity between the images in the acquisition sequence.
Such similarities have previously been exploited in recon-
struction methods as image priors for subsequent reconstruc-
tions from sparse data acquisitions, most notably in prior
image constrained compressed sensing (PICCS) reconstruc-
tions. These sparse acquisitions can be angularly under-
sampled, limited arcs, and/or highly truncated, providing the
opportunity for significant dose reductions or decreased
acquisition times. Analogous acquisition and reconstruction
problems exist on other imaging modalities (e.g. magnetic
resonance imaging).

PICCS reconstruction relies on compressed sensing norms
that are well suited to ill-posed problems due to their ability to
enforce sparsity in reconstructions. The total variation norm
(or L, norm) can be one particular choice. The total variation
norm is a method for reducing noise in images while preserv-
ing the representation of edges. Typically, the method is per-
formed by applying a so-called sparsifying transformation to
the estimated imagery, like a spatial gradient, if the underly-
ing image itself is not already a sparse entity. When prior
images are utilized in a reconstruction, one would expect that
the difference between a registered prior image and the new
reconstruction is sparse, having significant values only in
regions of change. In some cases, additional sparsifying
transforms are applied even though this difference may
already be sparse. If the prior image is not well-registered,
one would expect there to be more significant differences, and
the prior image therefore would have decreased utility. As
such, PICCS approaches that include an initial prior image
registration are known in the art.

However, there are drawbacks with the known methods of
image reconstruction. For example, while there are modifi-
cations to PICCS that accommodate misregistration, such
techniques are applied as a pre-processing step as opposed to
simultaneous processing that would leverage intermediate
reconstructions to improve the registration, perhaps as part of
an iterative procedure. Another potential issue with such
compressed sensing reconstructions is that they tend to adopt
a simplified forward model and no noise model. This is usu-
ally required in order to apply a linear constraint on a com-
pressing sensing objective. Likelihood-based approaches are
also known. However, while likelihood methods can make
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use of fairly sophisticated forward models, they have not
incorporated prior images in their objective function.

Each of the foregoing approaches is used to minimize a
compressed sensing or total variation type norm on the imag-
ery subject to a constraint that observed data matches the
reprojected image estimate. This is typically applied as a
linear constraint matching the log-transformed data with the
reprojected estimate. While this approach is attractive since it
strictly enforces the data match criterion, it does not recog-
nize that different measurements may contain different infor-
mation content. For example, it is common to presume that
x-ray measurements follow a Poisson noise distribution. As
such, the noise variance can be substantially space-variant
with different rays possessing very different signal-to-noise
ratios. In fact, it appears that PICCS may presume some kind
of noise model that is homoscedastic having the same vari-
ance in the log-transformed measurement space.

SUMMARY

A method for processing an image of a series of images
includes receiving first data representing a first previously
reconstructed image and receiving second data representing a
second image. A second image is reconstructed in accordance
with the first data, the second data and a noise model. The
noise model is a likelihood estimation. The second image is
reconstructed in accordance with a penalty function. The
penalty function is a roughness penalty function. The penalty
function is updated by iteratively adjusting an image volume
estimate. The penalty function is updated by iteratively
adjusting a registration term. The penalty function is a prior
image penalty function and the prior image penalty function
and a registration term are jointly optimized. The penalty
function is determined in accordance with a noise model. The
function is a p-norm penalty function.

The second image is reconstructed in accordance with a
plurality of penalty functions. The plurality of penalty func-
tions includes a first penalty function determined in accor-
dance with the first data and a second penalty function deter-
mined in accordance with a roughness function of the second
data. The first penalty function includes a penalty function
determined in accordance with a difference between the first
data and the second data.

The first and second images are registered in accordance
with a registration parameter and an image parameter. The
image parameter is an image volume. The registration param-
eter and an image parameter are jointly optimized by per-
forming an optimization over the registration term with the
image parameter fixed, performing an optimization over the
image parameter with the registration term fixed; and repeat-
ing the steps until an objective function is maximized. The
first image and the second image are registered jointly with
reconstructing the second image. The first image and the
second image are registered jointly with reconstructing the
second image by adjusting a registration term and an image
volume estimate.

A system for processing an image of a series of images
includes first data representing a first previously recon-
structed image, second data representing a second image; and
a reconstructed second image provided in accordance with
the first data, the second data and a noise model. The recon-
structed second image is reconstructed in accordance with a
likelihood. The reconstructed second image is reconstructed
jointly with an adjustment of an image registration term.

Additional advantages will be set forth in part in the
description which follows or may be learned by practice. The
advantages will be realized and attained by means of the
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elements and combinations particularly pointed out in the
appended claims. It is to be understood that both the forego-
ing general description and the following detailed description
are exemplary and explanatory only and are not restrictive, as
claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate embodi-
ments and together with the description, serve to explain the
principles of the methods and systems:

FIG. 1 shows a high level block diagram representation of
an embodiment of the image reconstruction system;

FIG. 2 shows a more detailed block diagram representation
of' an embodiment of the log-likelihood device of the image
reconstruction system;

FIG. 3 shows a more detailed block diagram representation
of an embodiment of the prior image penalty device of the
image reconstruction system;

FIG. 4 shows a more detailed block diagram representation
of an embodiment of the roughness estimate device of the
image reconstruction system;

FIG. 5 shows a more detailed block diagram representation
of'an embodiment of the optimization iteration device of the
image reconstruction system;

FIG. 6 shows a more detailed block diagram representation
of an embodiment of the image reconstruction system;

FIG. 7 is a flowchart illustrating an exemplary method; and

FIG. 8 is an exemplary operating environment.

DETAILED DESCRIPTION

Before the present methods and systems are disclosed and
described, it is to be understood that the methods and systems
are not limited to specific methods, specific components, orto
particular configurations. It is also to be understood that the
terminology used herein is for the purpose of describing
particular embodiments only and is not intended to be limit-
ing.

As used in the specification and the appended claims, the
singular forms “a,” “an,” and “the” include plural referents
unless the context clearly dictates otherwise. Ranges may be
expressed herein as from “about” one particular value, and/or
to “about” another particular value. When such a range is
expressed, another embodiment includes from the one par-
ticular value and/or to the other particular value. Similarly,
when values are expressed as approximations, by use of the
antecedent “about,” it will be understood that the particular
value forms another embodiment. It will be further under-
stood that the endpoints of each of the ranges are significant
both in relation to the other endpoint, and independently of
the other endpoint.

“Optional” or “optionally” means that the subsequently
described event or circumstance may or may not occur, and
that the description includes instances where said event or
circumstance occurs and instances where it does not.

Throughout the description and claims of this specifica-
tion, the word “comprise” and variations of the word, such as
“comprising” and “comprises,” means “including but not lim-
ited to,” and is not intended to exclude, for example, other
additives, components, integers or steps. “Exemplary” means
“an example of” and is not intended to convey an indication of
a preferred or ideal embodiment. “Such as” is not used in a
restrictive sense, but for explanatory purposes.

Disclosed are components that can be used to perform the
disclosed methods and systems. These and other components
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4

are disclosed herein, and it is understood that when combi-
nations, subsets, interactions, groups, etc. of these compo-
nents are disclosed that while specific reference of each vari-
ous individual and collective combinations and permutation
of these may not be explicitly disclosed, each is specifically
contemplated and described herein, for all methods and sys-
tems. This applies to all aspects of this application including,
but not limited to, steps in disclosed methods. Thus, if there
are a variety of additional steps that can be performed it is
understood that each of these additional steps can be per-
formed with any specific embodiment or combination of
embodiments of the disclosed methods.

The present methods and systems may be understood more
readily by reference to the following detailed description of
exemplary embodiments and the Examples included therein
and to the Figures and their previous and following descrip-
tion.

As will be appreciated by one skilled in the art, the methods
and systems may take the form of an entirely hardware
embodiment, an entirely software embodiment, or an
embodiment combining software and hardware aspects. Fur-
thermore, the methods and systems may take the form of a
computer program product on a computer-readable storage
medium having computer-readable program instructions
(e.g., computer software) embodied in the storage medium.
More particularly, the present methods and systems may take
the form of web-implemented computer software. Any suit-
able computer-readable storage medium may be utilized
including hard disks, CD-ROMs, optical storage devices, or
magnetic storage devices.

Embodiments of the methods and systems are described
below with reference to block diagrams and flowchart illus-
trations of methods, systems, apparatuses and computer pro-
gram products. It will be understood that each block of the
block diagrams and flowchart illustrations, and combinations
of blocks in the block diagrams and flowchart illustrations,
respectively, can be implemented by computer program
instructions. These computer program instructions may be
loaded onto a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions which
execute on the computer or other programmable data process-
ing apparatus create a means for implementing the functions
specified in the flowchart block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including computer-readable instructions for implement-
ing the function specified in the flowchart block or blocks.
The computer program instructions may also be loaded onto
acomputer or other programmable data processing apparatus
to cause a series of operational steps to be performed on the
computer or other programmable apparatus to produce a
computer-implemented process such that the instructions that
execute on the computer or other programmable apparatus
provide steps for implementing the functions specified in the
flowchart block or blocks.

Accordingly, blocks of the block diagrams and flowchart
illustrations support combinations of means for performing
the specified functions, combinations of steps for performing
the specified functions and program instruction means for
performing the specified functions. It will also be understood
that each block of the block diagrams and flowchart illustra-
tions, and combinations of blocks in the block diagrams and
flowchart illustrations, can be implemented by special pur-
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pose hardware-based computer systems that perform the
specified functions or steps, or combinations of special pur-
pose hardware and computer instructions.

Referring now to FIG. 1, there is shown a high level block
diagram representation of an embodiment of image recon-
struction system 10. Image reconstruction system 10 is a
hybrid estimator that is useful for reconstructing image data,
especially images of a series of images. In image reconstruc-
tion system 10 images may be registered and reconstructed
based upon a likelihood function, a prior image and a noise
model. Penalty terms may be calculated and parameterized
along with registration terms. Thus, the image reconstruction
provided by the image reconstruction system 10 can be based
upon a combination of a noise model and a prior image.
Furthermore, the registration term and the penalty function
may be jointly optimized within image reconstruction system
10, to thereby discourage differences between the images and
to allow for misregistration of images simultaneously.

Image reconstruction system 10 can include an image gen-
eration device 12, which can provide a series of images. For
example, image generation device 12 can be a tomographic
device, a magnetic resonance imaging device or any other
direct or indirect imaging device. Furthermore, the images
provided by image generation device 12 can be from any type
of repeated image acquisitions. For example, the images can
be a part of a series of CT images used for diagnostics or
image-guided procedures. The images may, for example, be a
series of images for monitoring nodule size over the course of
treatment of a lung cancer patient, or images provided by a CT
device operating in the cine mode for guiding a biopsy needle
or other device.

Image reconstruction system 10 may also include likeli-
hood system 16, which can receive its input from the output of
image generation device 12. Furthermore, likelihood system
16 can be a log-likelihood system 16 making use of forward
models to relate measurements from device 12 to the images
that are to be formed. The forward models used by log-
likelihood system 16 can be any forward models known to
those skilled in the art. The output of log-likelihood system 16
is a function of both the measurements made by image gen-
eration device 12 and the underlying parameter values that
specify the reconstructed output image.

Prior image penalty system 18 can also be included in
image reconstruction system 10. Prior image penalty system
18 can receive an input from the output of image generation
device 12, and apply a penalty function that discourages
differences between an image being reconstructed and a pre-
viously reconstructed or previously processed prior image. In
the penalty function of prior image penalty system 18 a cal-
culated penalty can be parameterized with a registration term.
The registration term and the penalty function are jointly
optimized in prior image penalty system 18, as part of the
reconstruction performed by image reconstruction system 10,
in order to both discourage differences between the images
and to allow for misregistration of images simultaneously.

Image reconstruction system 10 can also include rough-
ness penalty system 20, which can also receive an input from
the output of image generation device 12. When performing
radiation studies of a patient, it is desirable to perform the
studies with as low a dose of radiation possible, in order to
limit the radiation related risk to the patient. However, lower
doses of radiation produce noisier data. Furthermore, noisier
data causes image reconstruction system 10 to produce blur-
rier reconstructed images. Therefore, roughness penalty sys-
tem 20 can provide a roughness penalty term for penalizing
noisy data. For example, a roughness penalty term can
enhance reconstruction of sparse data for balancing the sto-
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6

chastic fluctuations of low radiation dose measurements with
spatial resolution requirements.

Optimization iteration system 22 can simultaneously
receive, as its inputs, the outputs of log-likelihood system 16,
prior image penalty system 18, and roughness penalty system
20. Furthermore, optimization iteration system 22 can use its
received inputs to provide an estimation term, and determine
whether the estimation term is maximized. Accordingly, opti-
mization iteration system 22 can repeatedly transfer opera-
tion of image reconstruction system 10 back to the inputs of
systems 16, 18, 20 by way of loop 24. The optimization
transfers back to the inputs of systems 16, 18, 20 can repeat
until the objective function is maximized. Image reconstruc-
tion system 10 can adjust selected image and registration
parameters when transferring operation to systems 16, 18, 20,
in order to iteratively maximize the objective function. For
example, optimization iteration system 22 may weigh param-
eters with a high variance less heavily than parameters with a
low variance. Accordingly, an embodiment of image recon-
struction system 10 can provide a prior image penalized
objective function.

In this manner, image reconstruction system 10 can itera-
tively optimize selected terms in its inputs in order to yield a
maximum-likelihood-based estimate, as described in more
detail below. Thus, the image reconstruction system 10 is a
likelihood-based estimator, wherein the estimator can have
two penalty functions, as described in more detail below. One
penalty function can incorporate prior image information.
The second penalty function can discourage image rough-
ness/noise. The objective function can also permit joint reg-
istration of the prior images. Thus, the operations of image
reconstruction system 10 can be referred to as prior image
with registration, penalized-likelihood estimation (PIRPLE).

Accordingly, the objective function of image reconstruc-
tion system 20 can be represented by Eqn. (1) below:

N argmax Eqgn. (1)
{#. 0} = logL{s; ¥) — B1 Ry (. 8 pr) — B2 Ra ()

u“, 0
where {

Ry(y, 6 pr) = |l = W(Ourll,
Ro () = V|,

The first term on the right hand side of Eqn. (1) represents a
log-likelihood function operating upon an image volume esti-
mate 1, for example an attenuation volume p in CT, and
measurement inputs y from the image generation device 12.
The first term of Eqn. (1) thus corresponds to the operations of
log-likelihood system 16. The second term on the right hand
side of Eqn. (1) represents a penalty function that can operate
upon the image volume estimate | a set of image registration
parameters d, and a parameter representative of a prior image
1 of the series of images from image generation device 12.
The second term of Eqn. (1) thus corresponds to the opera-
tions of prior image penalty system 18. The third term on the
right hand side represents a roughness penalty function that
can operate upon the image volume estimate .. The third term
of Eqn. (1) thus corresponds to the operations of roughness
penalty system 20. Thus, image reconstruction system 10 is a
hybrid estimator which can reconstruct images using both a
likelihood-based method and a prior image method.

Therefore, PIRPLE utilizes prior image information, com-
pressed-sensing penalties, a noise model for measurements,
and allows for joint registration of the prior images as part of
the reconstruction. PIRPLE is able to retain image quality
under situations where both significant noise and undersam-
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pling are present in the measurements from image generation
device 12. This permits separate simultaneous methods for
providing improved performance over known image recon-
struction systems. For example, radiation doses can be
reduced, for example, in CT applications. Alternately,
improved image acquisition speeds can be obtained, for
example, in CT or magnetic resonance imaging applications.

Referring now to FIG. 2, there is shown a block diagram
representation of image reconstruction system 30. Image
reconstruction system 30 is an alternate embodiment of
image reconstruction system 10. Furthermore, image recon-
struction system 30 includes a more detailed block diagram
representation of log-likelihood system 16. The operation of
log-likelihood system 16 is represented as the first term on the
right side of Eqn. (1), as previously described. Log-likelihood
system 16 can receive its inputs from the output of image
generation device 12. The prior image [, is received from
image generation device 12 by way of line 32, and the mea-
surement inputs y are received by way of line 34. Log-likeli-
hood system 16 can thus provide an output which is a function
of both the underlying parameter values that specify the out-
put image, and the measurements made by image generation
device 12.

Log-likelihood system 16 of image reconstruction system
30 can include mean measurement function 38, measurement
noise model 40, and likelihood function 42. For computed
tomography, mean measurement function 38 can use a gen-
eral sparse measurement model to provide a mean measure-
menty based upon a discretized object pas shown in Eqn. (2):

y=loexp(-4p) Eqn. (2)

where I, is the number of photons for each projection ray. The
photons represented by I, may be unattenuated photons. The
value A in Eqn. (2) can represent the system matrix that is the
discrete projection operator, for all angles and detector ele-
ments.

Any arbitrary noise model may be assumed for the mea-
surements of measurement noise model 40 within log-likeli-
hood system 16, wherein the noise can be assumed to be
independent of the measurement inputs y. However, in one
embodiment of measurement noise model 40, the commonly
applied Poisson model can be selected. Assuming a Poison
distribution of the noise in the measurement inputs y from the
noise generation device 12, the operation of measurement
noise model 40 can be represented as shown in Eqn. (3):

A Eqn. (3)

i ~ Poisson = p(y;| 1) = exp[-¥;()] I
!

The likelihood function of log-likelihood device 16 is then as
shown in Eqn. (4):

A Eqn. (4

yil

N N
Liy; ) = ply ) = ]_[ plyilw) = ]_[ exp[-¥;()]
i=1 i=1

i i

Assuming independent measurements and dropping
inconsequential constant terms, the combination of Eqns. (2),
(3), (4), can provide the representation of log-likelihood func-
tion of log-likelihood system 16 as shown in Eqn. (5):
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Eqn. (5)

N
logL(y; sy = ) yiloglloexp(~Aw)]; - [hoexp(-Ap)];
i=1

Maximization of Eqn. (5) alone can yield a maximum likeli-
hood estimate. However, the additional terms of Eqn. (1)
represent a modified objective function having a penalized-
likelihood solution.

Referring now to FIG. 3, there is shown a block diagram
representation of image reconstruction system 50. Image
reconstruction system 50 is an alternate embodiment of
image reconstruction system 10. Furthermore, image recon-
struction system 50 includes a more detailed block diagram
representation of prior image penalty system 18, wherein
prior image penalty system 18 can include registration mod-
ule 52, regularization module 54, and prior image penalty
function 56. The operation of prior image penalty system 18
can be represented as the second term on the right side of Eqn.
(1.

As previously described, prior image penalty system 18
can receive a prior image input i, from the output of image
generation device 12. The prior image input p, can be
received by way of line 32. Prior image penalty system 18 can
also receive an image volume estimate L and a registration
term 8 from optimization iteration system 22. The image
volume estimate | and the registration term 8 can be received
from optimization iteration system 22 by way of line 36.

Registration module 52 of prior image penalty system 18
can use the information i, and the registration term d to
register images of the series of images received from image
generation device 12. Thus, image reconstruction system 10
can perform a reconstruction using both a noise model, such
as measurement noise model 40 of log-likelihood system 16,
and a previously reconstructed or previously processed prior
image. Furthermore, in image reconstruction system 10
images can be registered and reconstructed based upon a
likelihood function, information |1, regarding a prior image,
and a noise model.

A regularization parameter f3, can also be provided to prior
image penalty system 18 in order to control the weight the
output term of prior image penalty system 18. The value of the
regularization parameter [, can be selected by a user of the
image reconstruction system 10, and the user selected value
can be applied to the prior image penalty system 18 by way of
line 58. When higher values of the regularization parameter
P, are selected, more of the prior image information can
appear in the output term of the image reconstruction system
10. Selecting lower values of the regularization parameter 3,
can result in less prior image information appearing in the
output term. Optimization of the objective function of Eqn.
(1) is adapted to balance the amount of the prior image infor-
mation in the reconstructed image of image reconstruction
system 10. The weighting of the output term can be performed
using the user selected regularization parameter §; in regu-
larization module 54 of prior image penalty system 18.

Prior image penalty system 18 can also apply a penalty
function to the inputs it receives from image generation
device 12. The penalty function of prior image penalty system
18 is represented as R;. In one embodiment, the penalty
function R, can be a p-norm penalty function that is well
known to those skilled in the art. In an embodiment the
p-norm of prior image penalty system 18 can be modified to
ensure differentiability at zero. The penalty function R, can
discourage differences between an image being reconstructed
and a previously reconstructed or previously processed prior
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image. Optimization iteration system 22 also iteratively
updates the penalty function R, by iteratively adjusting the
values of the image volume estimate p and the registration
term d. The updated values of the penalty function R, can then
be applied to the input of prior image penalty system 18
during each iteration cycle of the optimization iteration sys-
tem 22. The penalty function R, is applied to the input of prior
image penalty system 18 by way of line 44.

Thus, in prior image penalty system 18 a calculated penalty
is parameterized with a registration term 0 in registration
module 52. The registration term 8 and the penalty function
are jointly optimized within prior image penalty system 18, as
part of the reconstruction performed by image reconstruction
system 10. Jointly optimizing the registration term 8 and the
penalty function both: (i) discourages differences between
the images, and (ii) allows for misregistration of images
simultaneously. Furthermore, the joint registration process of
registration term d and the penalty function can permit the use
of unregistered prior images in image reconstruction system
10. The joint registration process can also take advantage of
an iterative update process, whereby an improved reconstruc-
tion estimate can be used to improve the registration estimate.
The improved registration estimate can then be used in turn to
improve the reconstruction. Accordingly, the output term of
prior image penalty system 18, 3, R, (1,d;11,), can be the prior
image penalty term of Eqn. (1) of image reconstruction sys-
tem 10.

Referring now to FIG. 4, there is shown a block diagram
representation of image reconstruction system 60. Image
reconstruction system 60 is an alternate embodiment of
image reconstruction system 10. Furthermore, image recon-
struction system 60 includes a more detailed block diagram
representation of roughness penalty system 20. Roughness
penalty device can include regularization module 62 and
roughness penalty function 64. As previously described,
roughness penalty system 20 can receive an input image
volume estimate | from the output of image generation device
12. The input p is received by way of line 32. The operation of
roughness penalty system 20 is represented as the third term
on the right side of Eqn. (1).

A regularization parameter 3, can also be provided to
roughness penalty system 20, in order to control the weight
the output term of roughness penalty system 20. The value of
the regularization parameter 3, can be selected by a user of
the image reconstruction system 10, and the user selected
value can be applied to roughness penalty system 20 by way
ofline 66. When higher values of the regularization parameter
[, are selected, greater penalties on roughness can appear in
the output term of the roughness penalty system 20. Selecting
lower values of the regularization parameter {3, can result in
less roughness penalty in the output term. The weighting of
the output term can be performed using the user selected
regularization parameter 3, in regularization module 62 of
roughness penalty system 20.

Roughness penalty system 20 also applies a penalty func-
tion to the inputs it receives from image generation device 12.
The penalty function of roughness penalty system 18 is rep-
resented as R,. It will be understood that higher roughness
can result in higher blurriness and less noise in the recon-
structed image of image reconstruction system 10. In one
embodiment, the roughness penalty function R, can be a
p-norm penalty function that is well known to those skilled in
the art. The p-norm roughness penalty function R, operates
upon a sparsified volume estimate. Optimization iteration
system 22 iteratively updates the roughness penalty function
R,. The updated values of the roughness penalty function R,
can then be applied to the input roughness penalty device 12
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during each iteration cycle of the optimization iteration sys-
tem 22 by roughness penalty function 64. The penalty func-
tion R, is applied to the input of roughness penalty device 20
by way of line 68.

Referring now to FIG. 5, there is shown a more detailed
block diagram representation of optimization iteration sys-
tem 22. As previously described, optimization iteration sys-
tem 22 can simultaneously receive, as its inputs, the outputs
of jointly operating log-likelihood system 16, prior image
penalty system 18, and roughness penalty system 20. Further-
more, optimization iteration system 22 can use the inputs
received from systems 16, 18, 20 to provide updated estima-
tion terms. Optimization iteration system 22 can also deter-
mine whether the estimation term is maximized.

The objective function of Eqn. (1) can be solved using an
alternating maximization approach. In the alternating maxi-
mization approach an optimization can be performed over
with a fixed 9. A further optimization can subsequently be
performed over 0 with a fixed p. This process can then be
repeated until the objective is maximized. Thus, image recon-
struction system 10 can jointly refine the image estimate and
the registration parameters. Furthermore, the alternating
iterative process permits image reconstruction system 10 to
discourage differences between the images, while simulta-
neously allowing for misregistration of images. This alternat-
ing maximization method works for both rigid and non-rigid
or deformable registrations of previously acquired images.
The alternating maximization operation may be performed in
the alternating maximization module 70 in optimization itera-
tion system 22.

When prior images are utilized in a reconstruction by the
image reconstruction system 10, the difference between a
registered prior image and a new reconstruction may be
sparse, if both images have significant values only in regions
of change. However, in some cases, additional sparsifying
transforms may be applied. The additional sparsitying trans-
forms may be applied even if the difference between the
images is already sparse.

Accordingly, image reconstruction system 10 can be pro-
vided with a sparsifying operator W and a registration trans-
formation operator W. In one embodiment, a sparsifying
operator W, may be provided for determining the value of R,
and thereby determining the prior image penalty term of prior
image penalty system 18. A second sparsifying operator ¥,
differing from the sparsifying operator ¥,, may be provided
for determining the value of R,, and thereby determining the
roughness penalty term at the output of roughness penalty
system 20. Furthermore, providing the two sparsifying opera-
tors, and W, and W,, can permit image reconstruction system
10 to provide different p-norm penalties for prior image pen-
alty system 18 and roughness penalty system 20.

While a spatial gradient operator can be used, it will be
understood that any sparsifying operator may be used for
sparsifying data in image reconstruction system 10. Addition-
ally, registration transformation operator W may be imple-
mented using a kernel-based interpolation scheme with dif-
ferentiable kernels. The sparsifying operations performed in
image reconstruction system 10 may be performed in data
sparsifying module 72 of optimization iteration system 22.

In order to facilitate the iterative optimization of the objec-
tive function represented as Eqn. (1), separable paraboloidal
surrogates that are easier to solve than the objective function
may be used. The applicable mathematical constraints that
must be met in order to use such separable paraboloidal
surrogates are known to those skilled in the art. For example,
the surrogates must match the value of the objective at the
current estimate. Furthermore, the derivative of the surrogates
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must match the derivative of the objective at the current
estimate. Additionally, the surrogate must lie everywhere
below the objective function (in the feasible region). Surro-
gates meeting these criteria may be guaranteed to converge
monotonically for image updates.

Separable paraboloidal surrogates iterations may be used,
for example, for the attenuation coefficients. Furthermore, a
quasi-Newton approach based on Broyden-Fletcher-Gold-
farb-Shanno (BFGS) updates may be used for the registration
parameters. Specifically, for the optimization, separable
paraboloidal surrogate iterations are applied for a fixed 0
followed by conjugate gradient iterations for a fixed p. The
separable paraboloidal surrogates may be used in separable
paraboloidal surrogates module 74.

Referring now to FIG. 6, there is shown image reconstruc-
tion system 80. Image reconstruction system 80 is a more
detailed block diagram representation of an embodiment of
the image reconstruction system 10. For illustrative purposes
image reconstruction system 10 is divided into Columns 1, 2,
3,4, 5,and Rows 1, 2, 3.

Column 1 of image reconstruction system 80 is the initial-
ization column. It describes how a user chooses to start the
initialization process of image reconstruction system 80 for
maximizing the objective function of Eqn. (1). For example,
in Row 1 of Column 1 the initial value of a volume parameter
L5 representative of a prior image, can be set equal to a prior
CT volume. In Row 2 of Column 1, the initial value of the
image registration parameter d can be set equal to 8 (based
on an initial reconstruction and registration) wherein the
superscript zero indicates that 8* is the value of d going in the
first iteration of image reconstruction system 80. In Row 3 the
image volume estimate 1 is given the initial value p, which
may come from a Filtered Back Projection (FBP) or a Penal-
ized Likelihood Estimation (PLE). In Row 4 of Column 1
initial values of p-norm can be assigned. The selection of the
initial values of p-norm will be discussed in more detail
below.

Column 2 and Column 3 of image reconstruction system
80, taken together, can represent the alternating iteration of
Eqn. (1). In Column 2, the value of [ can be iteratively
updated while the value of § is fixed. More specifically, the
value of 1 is updated when the value of u® is inputted into
Column 2, and the value of u** is outputted from Column 2
after the iteration. Thus, the value J1 is updated in Column 2.
Additionally, the value of 8" is inputted into Column 2, and
the same value 8 is outputted from Column 2 after the
iteration. Thus, the value of § is not updated in Column 2.

The process of optimizing the objective function of Eqn.
(1) can then alternate to iteratively updating the value of &
while the value of 11 is fixed, as shown in Column 3. The value
of 8 is inputted into Column 3, and the value of 8+ is
outputted from Column 3 after the after the iteration. Thus,
the value 8 is updated in Column 3. Additionally, the value of
p@*+Y is inputted into Column 3, and the same value p@+" is
outputted from Column 3 after the iteration. Thus, the value
of uis notupdated in Column 3. The process of optimizing the
objective function of Eqn. (1) can then alternate to iteratively
updating the value of p while the value of 0 is fixed. The
values { 1L, o } are provided at the output of image reconstruc-
tion system 80. These operations may be performed using
BFGS or Nonlinear Conjugate Gradients (NLCG).

The arrows shown in the representation of the image reg-
istration system 80 can show the possible flows of the pro-
cessing performed when iteratively maximizing the objective
function. For example, the 8***) arrow from an output of
Column 3, pointing back to an input of Column 2, provides
the iterated registration term for another iteration. The u®**
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arrow from an output of Column 3, pointing back to an input
of Column 2, provides an iterated image volume estimate for
another iteration. The dotted line can show some of the
optional paths that image reconstruction system 80 can take.

Row 4 of image reconstruction system 80 describes the
process of initializing and adjusting a prior image penalty. In
Column 1 of Row 4 an initial value of p-norm can be pro-
vided. It may be preferable to provide a nonconvex optimi-
zation by choosing a value p<l1. It may be more difficult to
obtain a solution to an objective function if a nonconvex
optimization is performed due to a value of p<1. However, if
avalue of p<1 is chosen, the nonconvexity may be handled by
using a graduated nonconvexity approach. In a graduated
nonconvexity approach the optimization can start with a value
p>1 and reduce the value of p gradually during the optimiza-
tion process, as shown in Column 4 of Row 4. Using this
approach p can be reduced toward a target value, for example
p=0.5.

In an aspect, illustrated in FIG. 7, provided are methods
and systems for processing an image of a series of images,
comprising receiving first data representing a first previously
reconstructed image at 701, receiving second data represent-
ing a second image at 702, and reconstructing the second
image in accordance with the first data, the second data and a
noise model at 703. In an aspect, the noise model can com-
prise a likelihood estimation.

The methods and systems can further comprise recon-
structing the second image in accordance with a penalty func-
tion. In an aspect, the penalty function can comprise a rough-
ness penalty function. The methods and systems can further
comprise updating the penalty function by iteratively adjust-
ing an image volume estimate. In an aspect, updating the
penalty function can comprise iteratively adjusting a registra-
tion term. The penalty function can be a prior image penalty
function further comprising jointly optimizing the prior
image penalty function and a registration term. In an aspect,
the penalty function can be determined in accordance with a
noise model. The penalty function can comprise a p-norm
penalty function.

In an aspect, the methods and systems can comprise recon-
structing the second image in accordance with a plurality of
penalty functions. The plurality of penalty functions can com-
prise a first penalty function determined in accordance with
the first data and a second penalty function determined in
accordance with a roughness function of the second data. The
first penalty function can comprise a penalty function deter-
mined in accordance with a difference between the first data
and the second data. The methods and systems can further
comprise registering the first and second images in accor-
dance with a registration parameter and an image parameter.
The image parameter can be an image volume. In an aspect,
the methods and systems can further comprise jointly opti-
mizing the registration parameter and an image parameter.
Jointly optimizing the registration parameter and the image
parameter can further comprise (a) performing an optimiza-
tion over the registration term with the image parameter fixed,
(b) performing an optimization over the image parameter
with the registration term fixed, and repeating steps (a) and (b)
until an objective function is maximized.

In an aspect, the methods and systems can further comprise
registering the first image and the second image jointly with
reconstructing the second image. In an aspect, the methods
and systems can still further comprise registering the first
image and the second image jointly with reconstructing the
second image by adjusting a registration term and an image
volume estimate.
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One skilled in the art will appreciate that provided is a
functional description and that the respective functions can be
performed by software, hardware, or a combination of soft-
ware and hardware. In one exemplary aspect, the units can
comprise a computer 801 as illustrated in FIG. 8 and
described below.

FIG. 8 is a block diagram illustrating an exemplary oper-
ating environment for performing the disclosed methods.
This exemplary operating environment is only an example of
an operating environment and is not intended to suggest any
limitation as to the scope of use or functionality of operating
environment architecture. Neither should the operating envi-
ronment be interpreted as having any dependency or require-
ment relating to any one or combination of components illus-
trated in the exemplary operating environment.

The present methods and systems can be operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
well-known computing systems, environments, and/or con-
figurations that can be suitable for use with the systems and
methods comprise, but are not limited to, personal computers,
server computers, laptop devices, and multiprocessor sys-
tems. Additional examples comprise set top boxes, program-
mable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments
that comprise any of the above systems or devices, and the
like.

The processing of the disclosed methods and systems can
be performed by software components. The disclosed sys-
tems and methods can be described in the general context of
computer-executable instructions, such as program modules,
being executed by one or more computers or other devices.
Generally, program modules comprise computer code, rou-
tines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. The disclosed methods can also be practiced in
grid-based and distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules can be located in
both local and remote computer storage media including
memory storage devices.

Further, one skilled in the art will appreciate that the sys-
tems and methods disclosed herein can be implemented via a
general-purpose computing device in the form of a computer
801. The components of the computer 801 can comprise, but
are not limited to, one or more processors or processing units
803, a system memory 812, and a system bus 813 that couples
various system components including the processor 803 to
the system memory 812. In the case of multiple processing
units 803, the system can utilize parallel computing.

The system bus 813 represents one or more of several
possible types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus
architectures. By way of example, such architectures can
comprise an Industry Standard Architecture (ISA) bus, a
Micro Channel Architecture (MCA) bus, an Enhanced ISA
(EISA) bus, a Video Electronics Standards Association
(VESA) local bus, an Accelerated Graphics Port (AGP) bus,
and a Peripheral Component Interconnects (PCI), a PCI-Ex-
press bus, a Personal Computer Memory Card Industry Asso-
ciation (PCMCIA), Universal Serial Bus (USB) and the like.
The bus 813, and all buses specified in this description can
also be implemented over a wired or wireless network con-
nection and each of the subsystems, including the processor
803, a mass storage device 804, an operating system 805,
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image processing software 806, image processing data 807, a
network adapter 808, system memory 812, an Input/Output
Interface 810, a display adapter 809, adisplay device 811, and
a human machine interface 802, can be contained within one
or more remote computing devices 814a,b,¢ at physically
separate locations, connected through buses of this form, in
effect implementing a fully distributed system.

The computer 801 typically comprises a variety of com-
puter readable media. Exemplary readable media can be any
available media that is accessible by the computer 801 and
comprises, for example and not meant to be limiting, both
volatile and non-volatile media, removable and non-remov-
able media. The system memory 812 comprises computer
readable media in the form of volatile memory, such as ran-
dom access memory (RAM), and/or non-volatile memory,
such as read only memory (ROM). The system memory 812
typically contains data such as image processing data 807
and/or program modules such as operating system 805 and
image processing software 806 that are immediately acces-
sible to and/or are presently operated on by the processing
unit 803.

In another aspect, the computer 801 can also comprise
other removable/non-removable, volatile/non-volatile com-
puter storage media. By way of example, FIG. 8 illustrates a
mass storage device 804 which can provide non-volatile stor-
age of computer code, computer readable instructions, data
structures, program modules, and other data for the computer
801. For example and not meant to be limiting, a mass storage
device 804 can be a hard disk, a removable magnetic disk, a
removable optical disk, magnetic cassettes or other magnetic
storage devices, flash memory cards, CD-ROM, digital ver-
satile disks (DVD) or other optical storage, random access
memories (RAM), read only memories (ROM), electrically
erasable programmable read-only memory (EEPROM), and
the like.

Optionally, any number of program modules can be stored
on the mass storage device 804, including by way of example,
an operating system 805 and image processing software 806.
Each of the operating system 805 and image processing soft-
ware 806 (or some combination thereof) can comprise ele-
ments of the programming and the image processing software
806. Image processing data 807 canalso be stored on the mass
storage device 804. Image processing data 807 can be stored
in any of one or more databases known in the art. Examples of
such databases comprise, DB2, Microsoft® Access,
Microsoft® SQL. Server, Oracle®, mySQL, PostgreSQL, and
thelike. The databases can be centralized or distributed across
multiple systems.

In another aspect, the user can enter commands and infor-
mation into the computer 801 via an input device (not shown).
Examples of such input devices comprise, but are not limited
to, a keyboard, pointing device (e.g., a “mouse”), a micro-
phone, a joystick, a scanner, tactile input devices such as
gloves, and other body coverings, and the like These and other
input devices can be connected to the processing unit 803 via
a human machine interface 802 that is coupled to the system
bus 813, but can be connected by other interface and bus
structures, such as a parallel port, game port, an IEEE 1394
Port (also known as a Firewire port), a serial port, or a uni-
versal serial bus (USB).

In yet another aspect, a display device 811 can also be
connected to the system bus 813 via an interface, such as a
display adapter 809. It is contemplated that the computer 801
can have more than one display adapter 809 and the computer
801 can have more than one display device 811. For example,
a display device can be a monitor, an LCD (Liquid Crystal
Display), or a projector. In addition to the display device 811,
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other output peripheral devices can comprise components
such as speakers (not shown) and a printer (not shown) which
can be connected to the computer 801 via Input/Output Inter-
face 810. Any step and/or result of the methods can be output
in any form to an output device. Such output can be any form
of'visual representation, including, but not limited to, textual,
graphical, animation, audio, tactile, and the like.

The computer 801 can operate in a networked environment
using logical connections to one or more remote computing
devices 814a,b,c. By way of example, a remote computing
device can be a personal computer, portable computer, a
server, a router, a network computer, a peer device or other
common network node, and so on. Logical connections
between the computer 801 and a remote computing device
814a,b,c can be made via a local area network (LAN) and a
general wide area network (WAN). Such network connec-
tions can be through a network adapter 808. A network
adapter 808 can be implemented in both wired and wireless
environments. Such networking environments are conven-
tional and commonplace in offices, enterprise-wide computer
networks, intranets, and the Internet 815.

For purposes of illustration, application programs and
other executable program components such as the operating
system 805 are illustrated herein as discrete blocks, although
it is recognized that such programs and components reside at
various times in different storage components of the comput-
ing device 801, and are executed by the data processor(s) of
the computer. An implementation of image processing soft-
ware 806 can be stored on or transmitted across some form of
computer readable media. Any of the disclosed methods can
be performed by computer readable instructions embodied on
computer readable media. Computer readable media can be
any available media that can be accessed by a computer. By
way of example and not meant to be limiting, computer read-
able media can comprise “computer storage media” and
“communications media.” “Computer storage media” com-
prise volatile and non-volatile, removable and non-removable
media implemented in any methods or technology for storage
of information such as computer readable instructions, data
structures, program modules, or other data. Exemplary com-
puter storage media comprises, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store the desired information and which
can be accessed by a computer.

The methods and systems can employ Artificial Intelli-
gence techniques such as machine learning and iterative
learning. Examples of such techniques include, but are not
limited to, expert systems, case based reasoning, Bayesian
networks, behavior based Al, neural networks, fuzzy systems,
evolutionary computation (e.g. genetic algorithms), swarm
intelligence (e.g. ant algorithms), and hybrid intelligent sys-
tems (e.g. Expert inference rules generated through a neural
network or production rules from statistical learning).

While the methods and systems have been described in
connection with exemplary embodiments and specific
examples, it is not intended that the scope be limited to the
particular embodiments set forth, as the embodiments herein
areintended in all respects to be illustrative rather than restric-
tive.

Unless otherwise expressly stated, it is in no way intended
that any method set forth herein be construed as requiring that
its steps be performed in a specific order. Accordingly, where
a method claim does not actually recite an order to be fol-
lowed by its steps or it is not otherwise specifically stated in
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the claims or descriptions that the steps are to be limited to a
specific order, it is no way intended that an order be inferred,
in any respect. This holds for any possible non-express basis
for interpretation, including: matters of logic with respect to
arrangement of steps or operational flow; plain meaning
derived from grammatical organization or punctuation; the
number or type of embodiments described in the specifica-
tion.

It will be apparent to those skilled in the art that various
modifications and variations can be made without departing
from the scope or spirit. Other embodiments will be apparent
to those skilled in the art from consideration of the specifica-
tion and practice disclosed herein. It is intended that the
specification and examples be considered as exemplary only,
with a true scope and spirit being indicated by the following
claims.

What is claimed is:

1. A method for processing an image of a series of images,
comprising:

receiving first data representing a first previously recon-

structed image of an object;

receiving, from an imaging device, second data represent-

ing a second image of the object, wherein the first data
represents the object at a first time and the second data
represents the object at a second time subsequent to the
first time; and

reconstructing the second image in accordance with the

first data, the second data and a measurement noise
model, wherein the measurement noise model is config-
ured to model noise in the second data introduced by the
imaging device, and wherein reconstructing the second
image accounts for time-based differences between the
first data and the second data.

2. The method for processing an image of claim 1, wherein
the measurement noise model comprises a likelihood estima-
tion.

3. The method for processing an image of claim 1, further
comprising reconstructing the second image in accordance
with a penalty function configured to penalize a feature in
reconstructing the second image.

4. The method for processing an image of claim 3, wherein
the penalty function comprises a roughness penalty function
configured to penalize roughness or noise in reconstructing
the second image.

5. The method for processing an image of claim 3, further
comprising updating the penalty function by iteratively
adjusting an image volume estimate.

6. The method for processing an image of claim 3, further
comprising updating the penalty function by iteratively
adjusting a registration parameter of the penalty function,
wherein the registration parameter is configured to indicate a
prior image for use in reconstructing the second image.

7. The method for processing data of claim 3, wherein the
penalty function is a prior image penalty function, and further
comprising jointly optimizing the prior image penalty func-
tion and a registration parameter configured to indicate a prior
image for use in reconstructing the second image.

8. The method of claim 1, wherein the second image is
reconstructed by iteratively optimizing an objective function,
and wherein the objective function comprises a first term
indicative of the measurement noise model and a second term
configured to discourage time-based differences between the
first previously reconstructed image and the second image.

9. The method for processing an image of claim 3, wherein
the penalty function comprises a p-norm penalty function.

10. The method for processing an image of claim 1, further
comprising reconstructing the second image in accordance
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with a plurality of penalty functions of an objective function,
wherein reconstructing the second image comprises itera-
tively adjusting the plurality of penalty functions to optimize
the objective function.

11. The method for processing an image of claim 10,
wherein the plurality of penalty functions comprises a first
penalty function determined in accordance with the first data
and a second penalty function determined in accordance with
a roughness function of the second data, wherein the rough-
ness function is configured to penalize roughness or noise in
reconstructing the second image.

12. The method for processing an image of claim 11,
wherein the first penalty function comprises a penalty func-
tion determined in accordance with a difference between the
first data and the second data.

13. The method for processing an image of claim 1, further
comprising registering the first and second images in accor-
dance with a registration parameter and an image parameter,
wherein the registration parameter and the image parameters
are parameters of a penalty term of an objective function
solved in reconstructing the second image.

14. The method for processing an image of claim 13,
wherein the image parameter is an image volume.

15. The method for processing an image of claim 13, fur-
ther comprising jointly optimizing the registration parameter
and an image parameter.

16. The method for processing an image of claim 15,
wherein jointly optimizing the registration parameter and the
image parameter further comprises: (a) performing an opti-
mization over the registration parameter with the image
parameter fixed; (b) performing an optimization over the
image parameter with the registration parameter fixed; and (c)
repeating steps (a) and (b) until an objective function is maxi-
mized.

17. The method for processing data of claim 1, further
comprising registering the first image and the second image
jointly with reconstructing the second image.
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18. The method for processing data of claim 17, further
comprising registering the first image and the second image
jointly with reconstructing the second image by adjusting a
registration parameter and an image volume estimate,
wherein the registration parameter and the image volume
estimate are terms of an objective function solved in recon-
structing the second image.

19. A system for processing an image of a series of images,
comprising:

a memory having encoded thereon computer-executable

instructions; and

a processor functionally coupled to the memory and con-

figured, by the computer-executable instructions, to per-

form at least the following actions,

receiving first data representing a first previously recon-
structed image of an object,

receiving, from an imaging device, second data repre-
senting a second image of the object, wherein the first
data represents the object at a first time and the second
data represents the object at a second time subsequent
to the first time, and

reconstructing a second image provided in accordance
with the first data, the second data and a measurement
noise model, wherein the measurement noise model is
configured to model noise in the second data intro-
duced by the imaging device, and wherein recon-
structing the second image accounts for time-based
differences between the first data and the second data.

20. The system for processing an image of claim 19,
wherein the second image is reconstructed in accordance with
a likelihood.

21. The system for processing an image of claim 19,
wherein the second image is reconstructed jointly with an
adjustment of an image registration parameter configured to
indicate a prior image for use in reconstructing the second
image.



